skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "van Dyk, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Data from high-energy observations are usually obtained as lists of photon events. A common analysis task for such data is to identify whether diffuse emission exists, and to estimate its surface brightness, even in the presence of point sources that may be superposed. We have developed a novel nonparametric event list segmentation algorithm to divide up the field of view into distinct emission components. We use photon location data directly, without binning them into an image. We first construct a graph from the Voronoi tessellation of the observed photon locations and then grow segments using a new adaptation of seeded region growing that we callSeeded Region Growing on Graph, after which the overall method is namedSRGonG. Starting with a set of seed locations, this results in an oversegmented data set, whichSRGonGthen coalesces using a greedy algorithm where adjacent segments are merged to minimize a model comparison statistic; we use the Bayesian Information Criterion. UsingSRGonGwe are able to identify point-like and diffuse extended sources in the data with equal facility. We validateSRGonGusing simulations, demonstrating that it is capable of discerning irregularly shaped low-surface-brightness emission structures as well as point-like sources with strengths comparable to that seen in typical X-ray data. We demonstrateSRGonG’s use on the Chandra data of the Antennae galaxies and show that it segments the complex structures appropriately. 
    more » « less
  2. ABSTRACT The analysis of individual X-ray sources that appear in a crowded field can easily be compromised by the misallocation of recorded events to their originating sources. Even with a small number of sources, which none the less have overlapping point spread functions, the allocation of events to sources is a complex task that is subject to uncertainty. We develop a Bayesian method designed to sift high-energy photon events from multiple sources with overlapping point spread functions, leveraging the differences in their spatial, spectral, and temporal signatures. The method probabilistically assigns each event to a given source. Such a disentanglement allows more detailed spectral or temporal analysis to focus on the individual component in isolation, free of contamination from other sources or the background. We are also able to compute source parameters of interest like their locations, relative brightness, and background contamination, while accounting for the uncertainty in event assignments. Simulation studies that include event arrival time information demonstrate that the temporal component improves event disambiguation beyond using only spatial and spectral information. The proposed methods correctly allocate up to 65$${{\ \rm per\ cent}}$$ more events than the corresponding algorithms that ignore event arrival time information. We apply our methods to two stellar X-ray binaries, UV Cet and HBC 515 A, observed with Chandra. We demonstrate that our methods are capable of removing the contamination due to a strong flare on UV Cet B in its companion ≈40× weaker during that event, and that evidence for spectral variability at times-scales of a few ks can be determined in HBC 515 Aa and HBC 515 Ab. 
    more » « less
  3. Abstract We describe a process for cross-calibrating the effective areas of X-ray telescopes that observe common targets. The targets are not assumed to be “standard candles” in the classic sense, in that we assume that the source fluxes have well-defined, but a priori unknown values. Using a technique developed by Chen et al. that involves a statistical method called shrinkage estimation , we determine effective area correction factors for each instrument that bring estimated fluxes into the best agreement, consistent with prior knowledge of their effective areas. We expand the technique to allow unique priors on systematic uncertainties in effective areas for each X-ray astronomy instrument and to allow correlations between effective areas in different energy bands. We demonstrate the method with several data sets from various X-ray telescopes. 
    more » « less
  4. Abstract White dwarfs (WDs) offer unrealized potential in solving two problems in astrophysics: stellar age accuracy and precision. WD cooling ages can be inferred from surface temperatures and radii, which can be constrained with precision by high-quality photometry and parallaxes. Accurate and precise Gaia parallaxes along with photometric surveys provide information to derive cooling and total ages for vast numbers of WDs. Here we analyze 1372 WDs found in wide binaries with main-sequence (MS) companions and report on the cooling and total age precision attainable in these WD+MS systems. The total age of a WD can be further constrained if its original metallicity is known because the MS lifetime depends on metallicity at fixed mass, yet metallicity is unavailable via spectroscopy of the WD. We show that incorporating spectroscopic metallicity constraints from 38 wide binary MS companions substantially decreases internal uncertainties in WD total ages compared to a uniform constraint. Averaged over the 38 stars in our sample, the total (internal) age uncertainty improves from 21.04% to 16.77% when incorporating the spectroscopic constraint. Higher mass WDs yield better total age precision; for eight WDs with zero-age MS masses ≥2.0M, the mean uncertainty in total ages improves from 8.61% to 4.54% when incorporating spectroscopic metallicities. We find that it is often possible to achieve 5% total age precision for WDs with progenitor masses above 2.0Mif parallaxes with ≤1% precision and Pan-STARRSg,r, andiphotometry with ≤0.01 mag precision are available. 
    more » « less